数学与统计学院学术报告[2020] 138号
(高水平大学建设系列报告491号)
报告题目: Vacuum free boundary problem of the nonisentropic compressible Navier-Stokes equations (Part II)
报告人: 袁源副研究员( 华南师范大学华南数学应用与交叉研究中心)
报告时间:2020年 12月09日 15:30-16:15
报告地点: 腾讯会议 191 112 595
报告内容:This talk focus on the motions of the nonisentropic viscous gas surrounded by the vacuum, which is modeled by the free boundary problem of the full compressible Navier-Stokes equations. The local-in-time existence and uniqueness of strong solutions in three-dimensional space are proved. The vanishing density and temperature condition is imposed on the free boundary, and the entropy is bounded. We will also introduce a class of globally defined large solutions to the free boundary problem of compressible full Navier-Stokes equations with constant shear viscosity, vanishing bulk viscosity and heat conductivity. We establish such solutions with initial data perturbed around the self-similar solutions when the thermodynamic coefficient \gamma>7/6. When 7/6<\gamma<7/3, solutions with bounded entropy can be constructed. If, in addition, in the case when 11/9<\gamma<5/3, we can construct a solution as a global-in-time small perturbation of the self-similar solution and the entropy is uniformly bounded in time.
报告人简历:袁源来自于华南师范大学华南数学应用与交叉研究中心,特聘副研究员。2018年博士毕业于香港中文大学,导师为辛周平教授。2018年至今在华南师范大学华南数学应用与交叉研究中心工作,其间于布雷西亚大学以博士后身份研修访问约一年,合作导师为Paolo Secchi教授。主要从事流体动力学方程方面的研究,主要包括含真空的Navier-Stokes方程自由界面问题、守恒律方程的周期扰动问题等。目前已在SIMA,M3AS,JDE等国际学术期刊上发表SCI论文4篇,主持国家自然科学基金青年科学基金项目1项。
欢迎感兴趣的师生参加!
数学与统计学院
2020年12月08日