数学与统计学院学术报告[2020] 076号
(高水平大学建设系列报告429号)
报告题目: Short wave model equations and their integrable semi-discretizations
报告人:Baofeng Feng教授 ( University of Texas Rio Grande Valley大学)
报告时间:2020年10月25日10:00-11:00
报告平台及链接: 腾讯会议ID:188959551
报告内容:Recently, Hone, Novikov and Wang have given a list of so-called generalized short pulse equations which are integrable. Among them, three are related to the 3-reductions of BKP/CKP hierarchies. One is named reduced Ostrovsky equation and its derivative form can be viewed as the short wave model of the Degasperis-Procesi (DP) equation, the second one can be viewed as the short wave model of the Novikov equation and the third one is connected to the first two via Miura transformation.
In the first part of my talk, I will make all above facts clear. Then I will construct their integrable semi-discretizations based on their connections of 3-reduction of negative BKP/CKP hierarchies.
报告人简历:冯宝峰教授早年毕业于清华大学获得应用物理学及应用数学双学士学位。后留学日本获得京都大学博士学位。现任德克萨斯大学大河谷分校数学与统计学院终身教授。冯宝峰教授从事应用数学特别是非线性科学方面的研究,在可积系统和孤立子理论方面提出了超快光脉冲传播的模型方程和可积格子自适应算法。冯宝峰教授目前获得1项美国国防部和两项美国自然科学基金共近1百万美元的资助。2016年和2018年分别通过上海交通大学和清华大学获得中国自然科学基金海外及港澳学者合作基金的资助。
欢迎感兴趣的师生参加!
数学与统计学院
2020年10月23日