学术报告

学术报告七十:Flexible bivariate Poisson integer-valued GARCH model

时间:2020-10-15 15:08

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2020] 070

(高水平大学建设系列报告423)

报告题目: Flexible bivariate Poisson integer-valued GARCH model

告人:朱复康 教授 (吉林大学

报告时间:101810:00-11:00

报告地点: 科技楼501

报告内容:

Integer-valued time series models have been widely used, especially integer-valued autoregressive (INAR) models and integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models. Recently, there has been a growing interest in multivariate count time series. However, existing models restrict the dependence structures imposed by the way they constructed. In this paper, we consider a class of flexible bivariate Poisson INGARCH(1,1) model whose dependence is established by a special multiplicative factor. Stationarity and ergodicity of the process are discussed. The maximization by parts algorithm and its modified version together with the alternative method by using R package Template Model Builder are employed to estimate the parameters of interest. The consistency and asymptotic normality for estimates are obtained and the finite sample performance of estimators are given via simulations. A real data example is also provided to illustrate the model.

报告人简历:

朱复康,吉林大学数学学院教授、博士生导师,概率统计与数据科学系主任。2008年博士毕业,2013年被破格聘为教授。主要从事时间序列分析和金融统计的研究,已经在Annals of Applied StatisticsJournal of Time Series Analysis等杂志上发表SCI论文40(其中第一作者或通讯作者的为32),被他人正式引用490余次,单篇文章最高引用110余次。作为负责人获得省部级以上科研项目9项,其中国家自然科学基金4项。现任中国数学会概率统计学会、中国现场统计研究会等12个学会的理事或常务理事,美国数学会《数学评论》评论员,已经为JRSSBJBES50余个SCI杂志审稿100余次。



 

                       数学与统计学院

                      20201015