学术报告

学术报告九:nonparametric prediction of CDF for heterogeneous data

时间:2020-05-09 16:47

主讲人 讲座时间
讲座地点 实际会议时间日
实际会议时间年月

数学与统计学院学术报告[2020] 009

(高水平大学建设系列报告362)

报告题目: nonparametric prediction of CDF for heterogeneous data

报告人: 李启寨 研究员 (中国科学院

报告时间:51716:30-17:30

报告地点: 腾讯会议,会议号 750 750 611

报告内容:

Modeling and inference for heterogeneous data have gained great interest recently due to the rapid developments in areas such as personalized medicine and personalized marketing. Most existing regression approaches are based on the conditional mean and may require additional cluster information to accommodate data heterogeneity. In this paper, we propose a novel nonparametric resolution-wise regression procedure to provide an estimated distribution of the response instead of one single value. We achieve this by decomposing the information of the response and the predictors into resolutions and patterns respectively based on marginal binary expansions. The relationship between resolutions and patterns are modeled by penalized logistic regressions. Combining the resolution-wise prediction, we deliver a histogram of the conditional response to approximate the distribution. Moreover, we show a sure independence screening property and the consistency of the proposed method for growing dimensions. Simulations and a real estate valuation dataset further illustrate the effectiveness of the proposed method.


 报告人简历:

李启寨,中国科学院数学与系统科学研究院研究员,美国统计学会会士(Fellow),国际统计学会推选会员(Elected Member)。2001年于中国科学技术大学获统计学学士学位,2006年于中国科学院数学与系统科学研究院获概率论与数理统计博士学位。2006年7月至今在中国科学院数学与系统科学研究院工作,2006-2010年任助理研究员,2010-2015任副研究员,2015至今任研究员,其中2006-2009在美国国家卫生健康研究院(NIH)国家癌症研究所(NCI)从事博士后研究研究。主要从事生物医学统计、统计遗传、分组检测等理论与应用研究,在Nature Genetics, AJHG, ACIE,JASA, JRSSB, Biometrics等杂志发表及接收发表论文100余篇,被同行引用1700余次。曾获国家优秀青年科学基金、农业部神农中华农业科技奖科学研究类成果一等奖等。现任中国数学会常务理事、全国工业统计学教学研究会常务理事等。


   数学与统计学院

  202057